
Kotlin
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2024 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 Thread Overview

 Thread Synchronization

© 2024 Arthur Hoskey. All
rights reserved.

Worker Serving Customers

Question

If the worker at the counter needs to go to the stock room to
get something for a customer, what will happen to the other
customers (assume only one worker at the counter)?

© 2024 Arthur Hoskey. All
rights reserved.

Worker Serving Customers

Question

If the worker at the counter needs to go to the stock room to
get something for a customer, what will happen to the other
customers (assume only one worker at the counter)?

ANSWER: Everything stops! All customers must wait.

© 2024 Arthur Hoskey. All
rights reserved.

User Another Worker to Help

 A better solution would be to have the customer
service worker ask another worker to get the item for
them.

 If this happens then the customer service worker can
serve other customers and keep the customer service
line moving.

 They can finish with the original customer when the
other worker returns with the item.

 The one downside is that using another worker
requires coordination between the two workers.

© 2024 Arthur Hoskey. All
rights reserved.

User Another Worker to Help

 Two things are being done at once in real time.
◦ One worker is retrieving an item for a customer.

◦ Another worker is serving customers at the custom service
counter.

 If there was only one worker, then they must either
retrieve the item or serve customers at the counter.
They cannot do both.

 The customer service line would be "blocked" until
the worker returns.

© 2024 Arthur Hoskey. All
rights reserved.

Threads vs Workers

 Threads in a computer program are like workers
at a store.

 Similar to how we can use multiple workers to
take care of something, a program can use
multiple threads to take care of something.

 One downside to using multiple threads is that
there must be coordination between the threads
(just like workers would need to coordinate with
each other in the previous example).

© 2024 Arthur Hoskey. All
rights reserved.

OS Processes

 Now on to OS processes…

© 2024 Arthur Hoskey. All
rights reserved.

 What happens when you
click the icon to run an
application?

 Important to understand
how a program actually
runs behind the scenes.

Operating Systems
© 2024 Arthur Hoskey. All
rights reserved.

Running a Program

 When a program is started the OS does
the following:
◦ Creates a process for the program.

◦ Copies the program from external memory
(hard drive, flash drive etc…) into RAM.

 A process is an instance of a running
program.

© 2024 Arthur Hoskey. All
rights reserved.

Running a Program

Hard Drive

Click program
to run

(word.exe)

Memory (RAM)

File

Word.exe

Process

Code from

Word.exe

OS creates a process

for the program

contained in

Word.exe

© 2024 Arthur Hoskey. All
rights reserved.

OS Controls Processes

Windows Task

Manager shows

information

about the

currently running

processes

Note: Windows Task

Manager has nothing to

do with C# Tasks

© 2024 Arthur Hoskey. All
rights reserved.

Threads

 Now on to threads…

© 2024 Arthur Hoskey. All
rights reserved.

Processes and Threads

 Processes are broken down to threads.

 Each process can contain multiple threads.

 Threads can be scheduled individually.

 The number of threads in each process can vary.

Thread
1

Process 1

Thread
2

Thread
1

Thread
2

Process 2

Thread
3

Shared Process Resources Shared Process Resources

© 2024 Arthur Hoskey. All
rights reserved.

Thread

 Thread – A smaller unit of a process which can be
scheduled and executed.

 Process Resources Shared- Threads of a process
share the resources of the containing process.

 Process can have more than one thread active.

 You can setup threads to run a particular method in a
program.

 For example…

© 2024 Arthur Hoskey. All
rights reserved.

Process Broken Down to Threads

Thread 1

Method B

Process

Program {

 Method A {}

 Method B {}

 Method C {}

}

Thread 2

Method C

Thread 3

Method A

Threads running

individual

methods of a

program

© 2024 Arthur Hoskey. All
rights reserved.

CPU with Multiple Cores

 A CPU is responsible for actually running the code
contained in processes and threads.

 A CPU can have multiple cores (a core is like a mini-
CPU)

 Each core can run a thread of its own.

 The cores run independently.

Core 1

CPU

Core 2

Core 3 Core 4

This CPU

has 4

cores

© 2024 Arthur Hoskey. All
rights reserved.

Threads Running Methods

Thread 1

Method B

Thread 2

Method C

Thread 3

Method A

Process can be broken down into

threads. Threads can start execution on

one core and finish on another core.

Process

Program {

 Method A {}

 Method B {}

 Method C {}

}

© 2024 Arthur Hoskey. All
rights reserved.

Core 1

CPU

Core 2

Core 3 Core 4

start/

finish

start

finish

finish

start

Main Thread and GUI

 The main thread is responsible for updating the GUI.

 Long running operations should be offloaded from the main
thread to other threads.

 If a long running operation is done on the main thread the user
cannot interact with the GUI. The GUI "hangs" in this case.

© 2024 Arthur Hoskey. All
rights reserved.

Run on Main Thread

fun mainGUI()

{

}The main thread is

responsible for

updating the GUI

Long Running Synchronous
Method Call on GUI Thread (BAD)

Run on Main Thread

void DoSomething()

{

// Code for a long

// running operation

// goes here…

}

1. Main calls

DoSomething

synchronously

Run on Main Thread

fun mainGUI()

{

 DoSomething();

}

mainGUI cannot

do anything until

DoSomething

returns

2. DoSomething runs

(mainGUI is blocked)

3. DoSomething

returns and main

continues

execution

© 2024 Arthur Hoskey. All
rights reserved.

Wait for DoSomething

to finish

The user will NOT be able to

interact with the GUI while

DoSomething is running!

GUI HANGS, VERY BAD

USER EXPERICENCE!

mainGUI function cannot

update GUI while waiting

(user cannot interact)

Long Running Method Call on
Another Thread (GOOD)

Run on Another Thread

void DoSomething()

{

// Code for a long

// running operation

// goes here…

}

1. Main calls

DoSomething on

another thread

Run on Main Thread

fun mainGUI()

{

 DoSomething();

}

mainGUI

continues

immediately (does

not wait for

DoSomething to

return)

2. DoSomething runs

(mainGUI is NOT blocked)

© 2024 Arthur Hoskey. All
rights reserved.

The user can interact with the

GUI (not locked). Creates a

good user experience.

Keep going!

Do not wait

for

DoSomething

to finish

mainGUI function does not

wait and keeps updating GUI

(user can interact)

Thread Synchronization

 Now on thread synchronization…

© 2024 Arthur Hoskey. All
rights reserved.

Multithreading Issues

 Multithreading Tradeoff - A multithreaded program gives the
benefit of doing two things at once, but it introduces more
complexity into the program.

 A multithreaded program most likely contains timing issues that
are not present in a single threaded program.
◦ For example, if thread 1 needs data from thread 2 then thread 1 needs to "wait"

for thread 2 to finish before it can execute.

◦ These types of timing issues can become very challenging to deal with.

 Imagine a program with 20 threads and multiple timing
dependencies.

 Theses types of programs are much harder to debug.

© 2024 Arthur Hoskey. All
rights reserved.

Critical Section

 Critical Section - A section of code that can only be
entered by one thread at a time.

 This section of code is mutually exclusive, only one thread
is allowed in.

 For example, a security check line scanner only allows one
person to be scanned at a time.

 Another example is a one lane bridge (allows only one car).

© 2024 Arthur Hoskey. All
rights reserved.

Thread Synchronization

 Thread synchronization – Make sure that only one
thread can access a critical section at any one
moment in time.

 Once one thread leaves the critical section another
can enter the critical section.

 Can use a synchronized block in Kotlin to perform
thread synchronization.

 For example…

© 2024 Arthur Hoskey. All
rights reserved.

End of Slides

 End of Slides

© 2024 Arthur Hoskey. All
rights reserved.

	Slide 1: Kotlin
	Slide 2: Today’s Lecture
	Slide 3: Worker Serving Customers
	Slide 4: Worker Serving Customers
	Slide 5: User Another Worker to Help
	Slide 6: User Another Worker to Help
	Slide 7: Threads vs Workers
	Slide 8: OS Processes
	Slide 9: Operating Systems
	Slide 10: Running a Program
	Slide 11: Running a Program
	Slide 12: OS Controls Processes
	Slide 13: Threads
	Slide 14: Processes and Threads
	Slide 15: Thread
	Slide 16: Process Broken Down to Threads
	Slide 17: CPU with Multiple Cores
	Slide 18: Threads Running Methods
	Slide 19: Main Thread and GUI
	Slide 20: Long Running Synchronous Method Call on GUI Thread (BAD)
	Slide 21: Long Running Method Call on Another Thread (GOOD)
	Slide 22: Thread Synchronization
	Slide 23: Multithreading Issues
	Slide 24: Critical Section
	Slide 25: Thread Synchronization
	Slide 26: End of Slides

